Math III Unit 4: RATIONAL EXPRESSIONS AND EQUATIONS

Lauren Winstead, Heritage High School

Main topics of instruction:

- 1) Direct, Joint, and Inverse Variation
- 2) Rational Functions and their Graphs
- 3) Multiplying and Dividing Rational Expressions
 - 4) Adding and Subtracting Rational Expressions
- 5) Solving Rational Equations and Inequalities

Day 1: Direct, Joint, and Inverse Variation

Direct Variation: A relationship between two variables such 4 ene variable increases or decreases proportionally

Identifying Direct Variation

Does y vary directly with x?

		1=5
x	y	×
2	8	==4
3	12	12-4
5	20	3-4

	Ŭ,
	9 = K
	×

$$\begin{array}{c|cccc} x & y & = 2 \\ \hline -1 & -2 & = 1 \\ \hline 3 & 4 & = 4 \\ \hline 6 & 7 & = 1.3 \\ \hline \end{array}$$

What about in equations? Central question:

Example 1:

You try! Can you get y = 2x + 3 into y = kx form?

Make a table of values, and use it to prove your answer.

	117.1	k= 11
x	у	×
1	5	5:5
2	7	
3	9	1=3.5

cisn't constant!

What one rule have you learned from this example? If your equation has an direct variation cannot exis

of variation? Find the diameter of a circle with circumference 105 cm.

C=TTd This is k! d= 33.42 cm

Example 3: Write and equation of direct variation that passes through (9, -1).

You try! Write an equation of direct variation that passes through (-3, 14).

Example 4: y varies directly with x, and x = 27 when y = 51. Find x when y = -17.

You try! y varies directly with x. If x = 1 when y = 5, find y when x = 3.

Inverse Variation: A relationship between variables Such that

when one increases, the other decreases (and vice versa)

Modeling Inverse Variation $y = \frac{k}{x}$, xy = k Proportionally.

Example 5: x and y vary inversely. x = 3 when y = -5. Write the function of inverse variation.

$$-5 = \frac{k}{3}$$
 $-15 = k$
 $y = -15$

You try! Decide which type of variation is represented by the data: direct, inverse, or neither.

		di	rect		The second second	present	ed by the da	ia: dire
1	x	0.5	2	6	125	,		K=5
1	y	1.5	6	18	1.5=2	=3	3 4 3	×
		design	inven	se	.5	2	6	
1	x	0.2	0.6	1.2	12 22			2 4
+	y	12	4	2	12.0.2=	2.4	4.0.6=	2.4
A [

T	X	1	2	3
4	y	2	1	0.5

2.1.2=2.4

Joint Variation

direct: y=1 inverse: y=	cx
0.11 00.	le
inverse u=	一天

Description	Equation
y varies directly with the square of x.	y=kx2
y varies inversely with the cube of x.	4=13
z varies jointly with x and y. joint = direct w/ more variables!	Z= LXY
z varies jointly with x and y and inversely with w.	Z = KX
z varies directly with x and inversely with the product of w and y.	Z = KX

Application: The volume of a regular tetrahedron varies directly with the cube of the length of an edge. The volume of a regular tetrahedron with edge length 3 is $\frac{9\sqrt{2}}{4}$. Find the formula for the volume of a regular tetrahedron.

 $V = k L^3$ $\frac{9\sqrt{2}}{4} = k(3)^3$

$$\frac{9\sqrt{2}}{4.27} = k$$

Day 2: Rational Functions and Their Graphs

Scanned by CamScanner

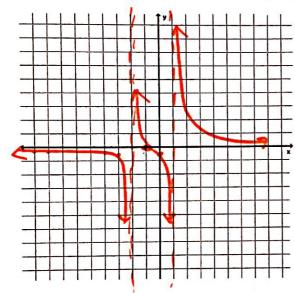
$$f(x) = \frac{P(x)}{Q(x)}$$

Points of discontinuity - 2 types

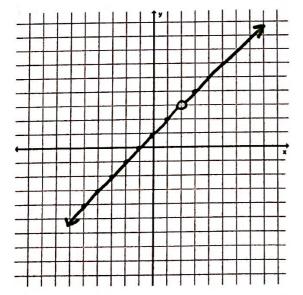
-> Asymptote: a line that a function gets closer and closer touches

Hole: a point on the function that the function skips

Example 1: Let's visualize it! Graph $\frac{(x+1)}{(x-1)(x+2)}$



Example 2: Let's visualize it! Graph $\frac{(x-2)(x+1)}{(x-2)}$



What happened at x = -2 and x = -1?

Try plugging in x = 1 to the equation:

$$\frac{(1+1)}{(1-1)(1+2)} = \frac{2}{(0)(3)} = \frac{2}{0} = \text{undef}.$$

Try plugging in x = 2 to the equation:

$$\frac{(2+1)}{(2-1)(-2+2)} = \frac{(-1)}{(-3)(0)} = \frac{-1}{0} = \text{undef}.$$
The denominator can never equal 0 !

Range: (-->-> Domain: (-∞,-2) V

(-2,1)

What happened at x = 2?

Try plugging in x = 2 to the equation:

Why do you think a hole was created instead of an asymptote?

(makes a

both the top and bottom

equal O

Domain: Range: $(-\infty, 2) \cup (2, \infty)$ $(-\infty, 3) \cup (3, \infty)$

Ask yourself two questions:

1) What numbers will make the denominator equal 0?

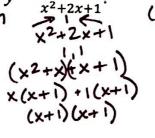
2) Do they make a hole or an asymptote? (or, will they also make the numerator equal 0?

Example 3: What are the points of discontinuity of $y = \frac{1}{x^2 + 2x + 1}$?

We need to factor the bottom

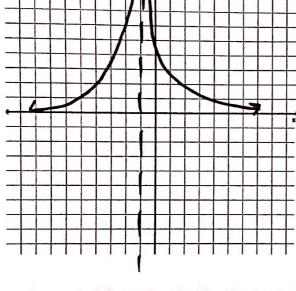
to find out what makes it $(x^2 + x)(x + 1)$ equal 0! $(x^2 + x)(x + 1)$ $(x^2 + x)(x + 1)$ asymptote! equal 0!

Is it an asymptote or a hole? Graph it!

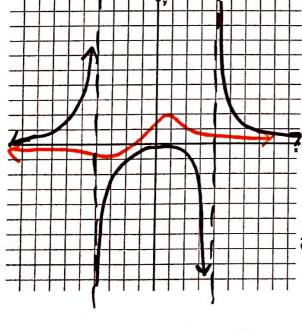


$$\frac{1}{(x+1)(x+1)}$$

$$\boxed{x \neq -1}$$
assymptote



You try! Find the points of discontinuity for:



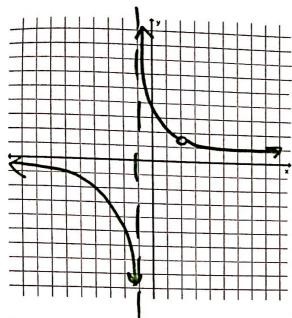
what would make the denom.

or $y = \frac{(x+3)(x-2)}{(x-2)(x+1)}$. Are they holes or asymptotes? what makes denom. Next page! equal 0?

x +2, x + -1 -9 augmp.
La also makes num. =0!?

(now)

Scanned by CamScanner



Day 3: More Rational Function Graphs: Horizontal Asymptotes

Yesterday, we talked about <u>vertical</u> asymptotes and <u>holes</u>.

But, some graphs also have Morizontal asymptotes.

Rules for Horizontal Asymptotes

1. Top Heavy: There is a horizontal asymptote at <u>none</u>. if <u>the degree on</u>

top is higher than the degree on the bottom.

2. Bottom Heavy: There is a horizontal asymptote at _____ if the degree on

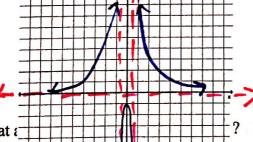
the bottom is higher than the degree on top.

3. Balanced: There is a horizontal asymptote at $\frac{y-b}{b}$ if a is the numer ator's

leading coefficient and b is the denominator's teading.

Example 1: Where are the points of discontinuity for $y = \frac{x+2}{2x^2-4}$, including all asymptotes

and/or holes?



$$y = \frac{x+2}{2(x^2-2)}$$

 $y = \frac{x+2}{2(x+\sqrt{2})(x-\sqrt{2})}$

You try! What :

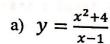
vertical asymptotes: x=52,-52 horizontal asymptotes: y=0 holes: none

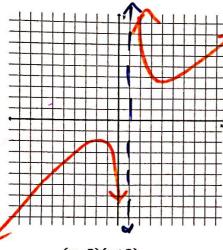
(-\infty, -\sqrt{2})\(\pi(-\sqrt{2},\sqrt{2})\)

Range: $(-\infty,0)$ $v(0,\infty)$

Socrand by

Scanned by CamScanner

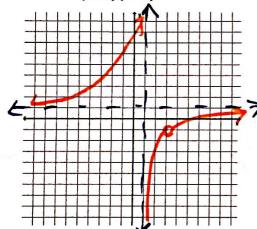




vertical asymptotes: X=1 horizontal asymptotes: none holes: none

Domain: (-∞,1)u(1,∞) (-∞,-2.47]u[1.47,∞)

b)
$$y = \frac{(x-2)(x+3)}{(x+3)(x-1)}$$



vertical asymptotes: x=1 horizontal asymptotes: y= -=1 holes: x=-3

Range: $(-\infty, 0.5) \cup (0.5, 1) \cup (1, \infty)$

Day 4: Multiplying and Dividing Rational Expressions

There is one goal when it comes to multiplying and dividing rational expressions, and that is to

Example 1: Simplify $\frac{x^2+10x+25}{x^2+9x+20}$

What are the restrictions on x? (What would make the denominator = 0?)