Warm Up

Take out your placemat and discuss it with your neighbor.

Unit 7

CONGRUENCE AND SIMILARITY PART I

Postulate

-A statement we take to be true without proof.

Theorem

-A statement that can be proven true.

Congruent Segments
-Segments which have equal lengths

Midpoint
-point that divides a segment into two congruent segments
B is midge of $A C$

$$
\begin{aligned}
& \overline{A B} \cong \overline{B C} \\
& m \overline{A B}=m / c \text { de foo } \\
& \text { dept }
\end{aligned}
$$

Segment Bisector

Perpendicular Lines
-Lines that intersect to form a right angle

Perpendicular Bisector
Line that is perpendicular to a segment at its midpoint

Congruent Angles
-Angles which have equal measures
\angle angle
$<$ less than

Angle Bisector:
-Ray that divides an angle into two
 congruent angles

$$
\begin{array}{l|l}
\overline{B D} \text { biscats } & \text { given } \\
\angle A B C & \\
\angle A B D \cong \angle C B D & \text { def of bisect } \\
m \angle A B D=m \angle C B D & \text { def of } \cong
\end{array}
$$

Complementary Angles:
-Two angles whose measures sum to 90°

Note: The two angles do not have to be

| $\angle A_{1} \angle B$ | given |
| :---: | :---: | :---: |
| are comp | |
| $m \angle B=90^{\circ}$ | def of comp $\angle ' s$ |
| | | adjacent!!

Supplementary Angles

-Two angles whose measures sum to 180° (make a straight line)
given
Note: Again, the two angles do not have to be not at adjacent!!

Linear Pair

-Two adjacent angles whose non-common sides are opposite rays

$\angle A, \angle B$
arvinpair
1

$$
\begin{aligned}
& \text { defoflinpoin } \\
& \text { diagran }
\end{aligned}
$$

*Linear Pair Postulate: $\angle A_{1} \angle B_{\text {are }} \quad \angle \mathrm{PD}$
Linear Pairs are supplementary
Linpqir post
$m \angle A+m \angle B=180^{\circ}$

Vertical Angles

Opposite (non-adjacent) angles formed by two intersecting lines

congruence

*Vertical Angle Theorem:

Right Angles

Right Triangle

-Triangle that contains a right angle

Reflexive Property of congruence
-A geometric figure is congruent to itself

Transitive Property of Congruence

$$
\text { If }<A \cong<B \text { and }<B \cong<C, \text { then }<A \cong<C
$$

In words:
If two things are congruent to the same thing, then they are congruent to each other.
$A \cong B \quad C \cong B$ then $A \cong C$

