Determine if the following triangles are congruent and name the postulate used.

(AAS) Angle-Angle-Sid

 TheoremIf two angles and a nonincluded side of one triangle are congruent to two angles and the corresponding nonincluded side of a second triangle, then the triangles are congruent.

$\triangle F G H \cong \triangle K J l$ by $A A S$

(HL) Hypotenuse - Leg Theorem

 - If the hypotenuse and a leg of a right Δ are \cong to the hypotenuse and a leg of a second Δ, then the $2 \Delta s$ are \cong.

The hypotenuse and one leg (HL) of the first right triangle are congruent to the corresponding parts of the second right triangle.

KAHOOT

Given that $\overline{H E} \perp \overline{L A}$ and $\overline{H L} \cong \overline{H A}$, prove the triangles are congruent.

$\overline{H E} \perp \overline{L A}$	Given
$\overline{H L} \cong \overline{H A}$	
$\angle H E A, \angle H E L$ are right $\angle ;$	Def of \perp
$\triangle H E L, \triangle H E A$ right ΔS	defofright \triangle
$\overline{H E} \cong \overline{H E}$	Reflexprop of \cong
$\triangle H E L \cong \triangle H E A$	$H L$

Given $\angle 1 \cong \angle 2, \angle E \cong \angle M$ and I is the midpoint of $\overline{R C}$, prove the triangles are congruent.

Example :

Given: M is the midpoint of $\overline{X Y}$.
Prove: $<A \cong<B$

