FACTORING OUT GCF

1) COMPLETE A FACTOR TREE FOR 84 $84=$

$$
\begin{aligned}
& =4 \cdot 21 \\
& =2 \cdot 2 \cdot 3 \cdot 7 \\
& =2^{2} \cdot 3 \cdot 7
\end{aligned}
$$

2) Complete a factor tree for -210 $-210=$

$$
\begin{aligned}
& =-1 \cdot 210 \\
& =-1 \cdot 30 \cdot 7 \\
& =-1 \cdot 6 \cdot 5 \cdot 7 \\
& =-1 \cdot 2 \cdot 3 \cdot 5 \cdot 7
\end{aligned}
$$

3) FINDTHE PRIME FACTORIZATION OF

$$
\begin{aligned}
45 \mathrm{a}^{2} \mathrm{~b}^{3} & =9 \cdot 5 \cdot a \cdot a \cdot b \cdot b \cdot b \\
= & 3 \cdot 3 \cdot 5 \cdot a \cdot a \cdot b \cdot b \cdot b \\
= & 3^{2} \cdot 5 \cdot a \cdot a \cdot b \cdot b \cdot b
\end{aligned}
$$

Write the variables without exponents.

WHAT IS THE PRIME FACTORIZATION
 OF 48?

$$
\begin{aligned}
\text { 1. } & 3 \cdot 16 \\
\text { 2. } & 3 \cdot 4 \cdot 4 \\
\text { 3. } & 2 \cdot 2 \cdot 3 \cdot 4 \\
4 . & 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3
\end{aligned}
$$

THE GREATEST COMMON FACTOR (GCF) OF 2 OR MORE NUMBERS IS

the largest number that can divide into all of the numbers.
4) Find the GCF of 42 and 60.

Write the prime factorization of each number.
4) FIND THE GCF OF 42 AND 60. $\left.\begin{array}{l}42=2 \\ 60=2 \\ 2\end{array} \cdot 2 \cdot \begin{array}{l}3 \\ 3\end{array}\right) \cdot 5$
What prime factors do the numbers have in common? Multiply those numbers.

The GCF is $2 \cdot 3=6$
6 is the largest number that can go into 42 and 60!
5) FIND THE GCF OF 40A²B AND 48AB4. $40 a^{2} b=2 \cdot 2 \cdot 2 \cdot 5 \cdot 2 \cdot a \cdot a \cdot\left(\begin{array}{l}a \\ 48 a b^{4}=2 \\ 2 \\ 2\end{array}\right) \cdot 2 \cdot 3 \cdot b \cdot b \cdot b \cdot b$ What do they have in common? Multiply the factors together. GCF = 8ab

WHAT IS THE GCF OF 48 AND 64?

1. 2
2. 4
3. 8
4. 16

Find the GCF and divide each term

$$
25 a^{2}+15 a=5 a\left(\frac{5 a}{t}+\frac{3}{t}\right)
$$

Check your answer by distributing.

2) FACTOR $18 X^{2}-12 X^{3}$.

Find the GCF
$6 x^{2}$
Divide each term by the GCF
$18 x^{2}-12 x^{3}=6 x^{2}\left(\frac{3}{1}-\frac{2 x}{1}\right)$

Check your answer by distributing.

3) $\mathrm{FACTOR} 28 A^{2} \mathrm{~B}+56 \mathrm{ABC}$ ².

GCF $=28 \mathrm{ab}$

Divide each term by the GCF
$28 a^{2} b+56 a b c^{2}=28 a b\left(\frac{a}{t}+\frac{2 c^{2}}{i}\right)$

Check your answer by distributing.

4) FACTOR $20 X^{2}-24 X Y$

$$
\begin{aligned}
\text { 1. } & x(20-24 y) \\
\text { 2. } & 2 x(10 x-12 y) \\
\text { 3. } & 4\left(5 x^{2}-6 x y\right) \\
\text { 4. } & 4 x(5 x-6 y)
\end{aligned}
$$

5) FACTOR $28 A^{2}+21$ B $35 \mathrm{~B}^{2} \mathrm{C}^{2}$

$\mathrm{GCF}=7$

Divide each term by the GCF $28 a^{2}+21 b-35 b^{2} c^{2}=7\left(\frac{4 a^{2}}{t}+\frac{3 b}{t}-\frac{5 b^{2} c^{2}}{t}\right)$

Check your answer by distributing.

FACTORING GCF

- Always factor out the GCF before attempting any other method of factoring.
- Work on homework

WARM UP DAY 2 FACTOR BY GROUPING

- Factor out the GCF of
- $3 x y-21 y$
- $5 x-35$

DAY 2 FACTOR BY GROUPING

- When polynomials contain four terms, it is sometimes easier to group like terms in order to factor.
- Your goal is to create a common factor.
- You can also move terms around in the polynomial to create a common factor.
- Practice makes you better in recognizing common factors.

FACTORING FOUR TERM POLYNOMIALS

FACTOR BY GROUPING
 EXAMPLE 1:

- FACTOR: $3 x y-21 y+5 x-35$
- Factor the first two terms:

$$
3 x y-21 y=3 y(x-7)
$$

- Factor the last two terms:
$+5 x-35=5(x-7)$
- The green parentheses are the same so it's the common factor

Now you have a common factor

$$
(x-7)(3 y+5)
$$

FACTOR BY GROUPING

- FACTOR: $6 m x-4 m+3 r x-2 r$
- Factor the first two terms:

$$
\mathbf{6 m x}-\mathbf{4 m}=2 m(3 x-2)
$$

- Factor the last two terms:
$+3 r x-2 r=r(3 x-2)$
- The green parentheses are the same so it's the common factor

Now you have a common factor

$$
(3 x-2)(2 m+r)
$$

FACTOR BY GROUPING

- FACTOR: $32 x+9 x y+16 y+18 x^{2}$

EXAMPLE 3:

- Factor the first two terms:
$32 x+9 x y=1(32 x+9 x y)$
- Factor the last two terms:
$+16 \mathrm{y}+18 x^{2}=1\left(16 y+18 x^{2}\right)$
- The green parentheses are not the same, so we must reorder it

FACTOR BY GROUPING

- FACTOR: $32 x+9 x y+16 y+18 x^{2}$

EXAMPLE 3:

- REORDER: $32 x+16 y+9 x y+18 x^{2}$
- Factor the first two terms:
$32 x+16 y=16(2 x+y)$
- Factor the last two terms:
$+9 \mathrm{xy}+18 \boldsymbol{x}^{2}=9 x(\mathrm{y}+2 \mathrm{x})$
- The green parentheses are the same, although a different order which is perfectly fine so we have this factorization:
- $(2 x+y)(16+9 x)$

FACIOR BY GROUPING

- FACTOR: $15 x-3 x y+4 y-20$

EXAMPLE 4:

- Factor the first two terms:

$$
15 x-3 x y=3 x(5-y)
$$

- Factor the last two terms:

$$
+4 y-20=4(y-5)
$$

- The green parentheses are opposites so change the sign on the 4

$$
-4(-y+5) \text { or }-4(5-y)
$$

- Now you have a common factor

$$
(5-y)(3 x-4)
$$

WORK ON HOMEWORK

- Bring a laptop tomorrow if you have one

DAY 3 FACTORING BY GROUPING PART 2

- Grab a laptop from the laptop cart and get in groups of no more than 3.
- You can work alone if necessary
- Use your own laptop if possible
- Go to student.desmos.com
- Enter class code 3C9YD
- Drag and drop 4 term polynomials together with their factors. Once finished, work individually on homework until the end of class.

WARM UP FOR DAY 4

- Factor by grouping:
- $5 x^{2} y-15 x y^{2}-3 x+9 y$
- $10 a^{3} b^{5}+18 a b-5 a^{4} b^{4}-9 a^{2}$

FACTORING CHART

 THIS CHART WILL HELP YOU TO DETERMINE WHICH METHOD OF FACTORING TO USE.TYPE

1. GCF
2. Difference of Squares (today)
3. Trinomial factoring (coming up)
4. Grouping

NUMBER OF TERMS

2 or more
2

3

4

DETERMINE THE PATTERN

$$
\begin{array}{llc}
1 & =1^{2} & \text { These are perfect squares! } \\
4 & =2^{2} & \text { You should be able to list } \\
9 & =3^{2} & \text { the first } 15 \text { perfect } \\
16 & =4^{2} & \text { squares in } 30 \text { seconds... } \\
25 & =5^{2} & \\
36 & =6^{2} & \begin{array}{l}
\text { Perfect squares } \\
\cdots
\end{array} \\
& 100,16,125,36,49,64,81,144,169,196,225 \\
100,121,
\end{array}
$$

REVIEW: MULTIPLY $(X-2)(X+2)$

Combine like terms.

This is called the difference of squares.

DIFFERENCE OF

 SQUARES$a^{2}-b^{2}=(a-b)(a+b)$
or
$a^{2}-b^{2}=(a+b)(a-b)$
The order does not matter!!

4 STEPS FOR FACTORING DIFFERENCE OF SQUARES

1. Are there only 2 terms?
2. Is the first term a perfect square?
3. Is the last term a perfect square?
4. Is there subtraction (difference) in the problem?
If all of these are true, you can factor using this method!!!

1. FACTOR X2 -25

Do you have a GCF? No
Are the Difference of Squares steps true?
Two terms? Yes
${ }^{\text {st }}$ term a perfect square? Yes $2^{\text {nd }}$ term a perfect square? Yes Subtraction? Yes Write your answer!

2. FACTOR $16 X^{2}-9$

When factoring, use your factoring table.
Do you have a GCF? No
Are the Difference of Squares steps true?
Two terms? Yes $16 x^{2}-9$
$1^{\text {st }}$ term a perfect square? Yes $2^{\text {nd }}$ term a perfect square?
Subtraction?
Write your answer!

3. FACTOR $81 A^{2}-49 B^{2}$

When factoring, use your factoring table.
Do you have a GCF? No
Are the Difference of Squares steps true?
Two terms? Yes 81a²-49b²
${ }^{\text {st }}$ term a perfect square? $2^{\text {nd }}$ term a perfect square? Subtraction? Yes Write your answer!

FACTOR $X^{2}-Y^{2}$

1. $(x+y)(x+y)$
2. $(x-y)(x+y)$
3. $(x+y)(x-y)$
4. $(x-y)(x-y)$

Remember, the order doesn't matter!

4. FACTOR 75X2 - 12

When factoring, use your factoring table.
Do you have a GCF? $3\left(25 x^{2}-4\right)$

Yes! GCF $=3$

Are the Difference of Squares steps true?
Two terms? Yes
$1^{\text {st }}$ term a perfect square? Yes
$2^{\text {nd }}$ term a perfect square? Yes $\quad 3\left(25 \mathrm{x}^{2}-4\right)$
Subtraction? Yes Write your answer!

FACTOR $18 C^{2}+8 D^{2}$

1. prime
2. $2\left(9 c^{2}+4 d^{2}\right)$
3. $2(3 c-2 d)(3 c+2 d)$
4. $2(3 c+2 d)(3 c+2 d)$

You cannot factor using difference of squares
because there is no subtraction!

FACTOR -64 + 4M ${ }^{2}$

1. prime
2. $(2 m-8)(2 m+8)$
3. $4\left(-16+m^{2}\right)$
4. $4(m-4)(m+4)$

Rewrite the problem as
$4 m^{2}-64$ so the
subtraction is in the middle! OF CLASS

DAY 5 WARMUP

-1. $a^{2}-16$
-2. $x^{2}-25$
-3. $4 y^{2}-16$
-4. $9 y^{2}-25$
-5. $3 r^{2}-81$
-6. $2 a^{2}+16$

FACTORING TRINOMIALS $\left(a x^{2}+b x+c\right)$ where $a=1$

actoring Trinomials $a=1$

Again, we will factor trinomials such as $x^{2}+7 x+12$ back into binomials.

In this method we look for the pattern of products and sums!

If the x^{2} term has no coefficient (other than 1)...

$$
x^{2}+7 x+12
$$

Step 1: List all pairs of numbers that multiply to equal the constant, 12.

$$
\begin{aligned}
12 & =1 \cdot 12 \\
& =2 \cdot 6 \\
& =3 \cdot 4
\end{aligned}
$$

actoring Trinomials $a=1$

$x^{2}+7 x+12$
 $$
12=1 \cdot 12
$$

$$
1+12=13 \text { no }
$$

Step 2: Choose the pair that adds up to the middle coefficient.

Step 3: Fill those numbers into the blanks in the binomials:

$$
(x+3)(x+4)
$$

$$
x^{2}+7 x+12=(x+3)(x+4)
$$

```
Factor. }\quad\mp@subsup{x}{}{2}+9x+1
```

Step 1: List all pairs of $14=$ numbers that multiply to equal the constant, 14.

Step 2: Which pair adds up to 9?
Step 3: Write the binomial factors.

$$
x^{2}+9 x+14=(x+7)(x+2)
$$

```
Factor. }\mp@subsup{x}{}{2}+13x+3
```

Step 1: List all pairs of $36=$ numbers that multiply to equal the constant, 36.

Step 2: Which pair adds up to 13?
Step 3: Write the binomial factors.

$$
x^{2}+13 x+36=(x+9)(x+4)
$$

actoring Trinomials $a=1$

Factor. $\quad x^{2}+2 x-24$

This time, the constant is negative!

Step 1: List all pairs of numbers that multiply to equal the constant, -24. (To get -24, one number must be positive and one negative.)

Step 2: Which pair adds up to 2?
Step 3: Write the binomial factors.

$$
\begin{aligned}
-24 & =(1 \cdot-24),(-1 \cdot 24) \\
& =(2 \cdot-12),(-2 \cdot 12) \\
& =(3 \cdot-8),(-3 \cdot 8) \\
& =(4 \cdot-6),((-4 \cdot 6))
\end{aligned}
$$

$$
x^{2}+2 x-24=(x-4)(x+6)
$$

actoring Trinomials $a=1$

Factor. $\quad x^{2}-3 x-18$

This time, the constant is negative!
Step 1: List all pairs of $-18=$ numbers that multiply to equal the constant, -18. (To get -18, one number must be positive and one negative.)

Step 2: Which pair adds up to -3?
Step 3: Write the binomial factors.

$$
x^{2}-3 x-18=(x-6)(x+3)
$$

WORK ON HOMEWORK

WARMUP FOR DAY 6

- Factor the following:
- $x^{2}-7 x-18$

$$
\begin{aligned}
& 27 x^{2}-300 \\
& 3\left(9 x^{2}-100\right)
\end{aligned}
$$

- $x^{2}+11 x+30$

- $x^{2}-7 x+12$
- $9 x^{2}-49$
$(3 x+7)(3 x-7) \&$

FACTORING TRINOMIALS WITH A > 1

Objective: To discover factoring quadratics with a leading coefficient greater than 1 and special care quadratics
$a x^{2}+b x+c$

FACTORING WHEN |A|\#1

- Step 1: Since there is no common factors find ac
- Step 2: Rewrite bx as the sum of the two terms with coefficients that are factors of $a c$, and have a sum of b
- Step 3: Factor

-multiply 3 times - 6.

To make the sum negative, the largest number must be negative.

Check using the F.O.I.L. method:

$$
\begin{gathered}
(3 x+2)(x-3) \\
3 x^{2}-9 x+2 x-6 \\
3 x^{2}-7 x-6
\end{gathered}
$$

$9 x^{2}-12 x+4$

To make the
sum negative, both numbers

$$
\begin{array}{c|l}
\begin{array}{c}
\text { product } \\
36
\end{array} & -12 \\
\hline-1 \cdot-36 & -37 \\
-2 \cdot-18 & -20 \\
-3 \cdot-12 & -15 \\
-4 \cdot-9 & -13 \\
-6 \cdot-6 & -12
\end{array}
$$ must be negative.

Check using the F.O.I.L. method:

$$
\begin{gathered}
(3 x-2)(3 x-2) \\
9 x^{2}-6 x-6 x+4 \\
9 x^{2}-12 x+4
\end{gathered}
$$

PERFECT SQUARE TRINOMIALS

$42 x^{2} \cdot 2.44 x \cdot+: 36$

$x x^{2} \cdot+1(1) x \cdot 4 \cdot 2!$
(9) $x^{2} \cdot 4 \cdot 482 x \cdot 4 \cdot(64$
$4.9 x^{2} \cdot 4 \cdot \sin 6 x \cdot+16$

FACTORING A DIFFERENCE OF SQUARES

$a a^{2} \cdot b^{2}:=(a+b)(a \cdots b)$

$$
x^{2}-16
$$

$4 x^{2}-9$

$25 x^{2}-49$

$81 x^{2}-100$
check your work.

FACTORING WITH A LEADING COEF

$60,-1$	$-60,1$	$3 x^{2}-11 x-20$	
$30,-2$	-30,	2	-60
$20,-3$	$-20,3$	2	
$15,-4$	$-15,4$	$\left.3 x^{2}-15 x\right)+(4 x-4)$	
$12,-5$	$-12,5$	$3 x(x-5)+4(x-5)$	
$10,-6$	10,6	$(x-5)(3 x+4)$	

$$
\begin{array}{ll}
-120 & \left(8 x^{2}-2 x-15\right. \\
-120,1 & \left(8 x^{2}-12 x\right)+(10 x-15) \\
-12,10 \text { or } 10,-12 & 4 \times(2 x-3)+5(2 x-3) \\
& \sqrt{(2 x-3)(4 x+5)}
\end{array}
$$

$$
\begin{array}{ll}
4 x^{2}-64 & 9 x^{2}-100 \\
3 x^{2}+21 x+36 & 6 x^{2}+27 x-15
\end{array}
$$

