Unit 4: Radical and Reciprocal Equations $\$$ Functions

By the end of the unit students will be able to:

- Extend the properties of exponents to rational exponents.
- Solve equations using radicals and reciprocal functions

Day	Date	Lesson	Assignment	Check
1	Friday Oct. 6 ${ }^{\text {th }}$	Monomial Rules / Properties of Exponents	Homework 4-1	
2	Monday Oct. $9^{\text {th }}$	Types of Variation	Homework 4-2	
3	Tuesday Oct. 10 ${ }^{\text {th }}$	Systems involving Inverse Variation	Homework 4-3	
4	Wednesday Oct. $11^{\text {th }}$	Solving Radical Equations	Homework 4-4	
5	Thursday Oct. 12 ${ }^{\text {th }}$	Solving Radical Equations	TBD	
6	Friday Oct. 13 ${ }^{\text {th }}$	Review and Quiz		
7	Monday Oct. 16 ${ }^{\text {th }}$	Graphing Radical Functions	Homework 4-7	
8	Tuesday Oct. 17 ${ }^{\text {th }}$	Graphing Reciprocal Functions	Homework 4-8	
9	Wednesday Oct. 18 ${ }^{\text {th }}$	Review for Test	Review Sheet	
10	Thursday Oct. 19 ${ }^{\text {th }}$	Unit 4 Test	Unit 5 Placemat	

More Properties of Exponents

Date \qquad Period

Simplify. Your answer should contain only positive exponents.

1) $\left(x^{2} x^{3}\right)^{4} \frac{1}{x^{20}}$
2) $\left(x^{4}\right)^{3} \times 2 x^{4} \frac{2 x^{4}}{x^{12}}$
$\frac{27}{x^{8}}$
3) $\left(n^{3}\right)^{3} \times 2 n^{1}$

4) $(2 v)^{2} \times 2 v^{2}$

5)

6) $\frac{2 y^{3} \times 3 x y^{3}}{3 x^{2} y^{4}}$

9) $\frac{x}{\left(2 x^{0}\right)^{2}}\left(\frac{x}{4}\right)$
10) $\frac{2 m^{4}}{\left(2 m^{4}\right)^{3}}$

Variation Practice
For each table, determine whether y varies directly with x, indirectly with x, or neither. Write an equation to
1.

2.

3.

4. Neither... but

x	y
.1	3
3	.1
6	.005
24	.00125

Determine whether y varies directly with x. If so, find the constant of variation and find y when $x=4$. 5. $\mathrm{y}=12 \mathrm{x}$
6. $y-6 x=0 \quad y=6 \times \quad k=6$
7. $Y=4 x-3$

$$
y=6.4=24
$$

8. If j varies jointly as g and the cube of h , and $\mathrm{j}=200$ when $\mathrm{g}=5$ and $\mathrm{h}=4$, find j when $\mathrm{g}=3$ and $\mathrm{h}=6$.

$$
\begin{aligned}
& j=k g h^{3} \quad 200=k \cdot 5 \cdot y^{3} \Rightarrow 200=k \cdot 5 \cdot 64 \Rightarrow 200=320 k=2=5 / 8 \quad j=5 / 8 \cdot 3 \cdot 6^{3} \\
& \text { average number of phone calls per day between two cities has found to be joint }=4050 \text { portion }
\end{aligned}
$$

9. The average number of phone calls per day between two cities has found to be jointhypreportional to the populations of the cities, and inversely proportional to the square of the distance between the two cities. The population of Charlotte is about 1,500,000 and the population of Nashville is about 1,200,000, and the distance between the two cities is about 400 miles. The average number of calls between the cities is about 200,000.
(a) Find the \mathbf{k} and write the equation of variation.
(b) The average number of daily phone calls between Charlotte and Indianapolis (which has a population of about $1,700,000$) is about 134,000 . Find the distance between the two cities.

Suppose that x and y vary inversely. Write a function that models each inverse variation. Graph the function and find y when $\mathrm{x}=10$.
10. $\mathrm{x}=1$ when $\mathrm{y}=11$

11. $\mathrm{x}=-4 / 15$ when $\mathrm{y}=-105$

12. $\mathrm{X}=1$ when $\mathrm{y}=1$

11. Heart rates and life spans of most mammals are inversely related. A cat lives for about 15.2 years on average and has a heart rate of 126 beats per minute.
a. What is the constant of variation?
b. A hamster has a heart rate of about 634 beats per minute. About how long will a hamster live?
c. An elephant lives for about 70 years. About how many times per minute does an elephant's heart beat?
12. Two gears are used to operate a machine. Gear A has 60 teeth and Gear B has 45 teeth. The speed at which you turn Gear A is 5400 rpm . The number of teeth and speed in rpm are inversely related.
a. What is the constant of variation?
b. At what speed will Gear B turn?
13. The grade you earn in math varies inversely with the number of minutes per night you watch television. If you watch 90 minutes per night, you get a 60 in math.
a. What is the constant of variation?
b. How much television can you watch if you want to make a 70 ?
c. You cut back on your television to only 75 minutes a night, what grade will you make in math?
14. The amount of water that has leaked from a faucet varies directly with time. In 2 hours, 10 gallons of water leak.
a. Describe what happens to the amount of water as time increases.
b. What is the constant of variation?
c. How much water leaks in 100 hours?
d. How long does it take for 100 gallons to leak?

HW 4-2 Direct, Inverse and Joint Variation
State whether each equation represents a direct, inverse, or joint variation. Name the constant of variation.

3. $x y=12$

4. $D=\frac{3}{2} g h$

Write an equation for each statement. Then solve the equation.
5. If y varies directly as x and $y=15$ when $\mathrm{x}=3$, find y when $\mathrm{x}=12$.

$$
\begin{aligned}
y & =k x \\
15 & =k \cdot 3 \\
k & =5
\end{aligned}
$$

7. Suppose y varies jointly with x and z . If $y=20$ when $x=2$ and $z=5$, find y when $\mathrm{x}=14$ and $\mathrm{z}=8$.

$$
\begin{array}{l|l}
y=k x z & y=2 x z \\
20=k \cdot 2.5 & y=2.14 .8 \\
20=10 k & y=2224 \\
2=18 &
\end{array}
$$

6. If y varies inversely as x and $y=2$ when $\mathrm{x}=8$, find x when $\mathrm{y}=14$.
7. If y varies inversely as x and $x=7$ when $\mathrm{y}=21$, find y when $\mathrm{x}=42$.

8. The frequency of a vibrating string varies inversely as its length. A string 3 feet long vibrates 175 cycles per second. Find the frequency of a 5 foot string.

$$
f=k / L \Rightarrow 175=k / 3 \Rightarrow k=525
$$

$$
\begin{aligned}
& f=525 \\
& \text { blowing at } 50 \mathrm{mph} \text { ex } \\
& \text { h place on a surface }
\end{aligned}
$$

11. The time required to process a shipment of goods at Wal-Mart varies directly with the number of items in the shipment and inversely with the number of workers assigned. If 15,000 items can be processed by 8 workers in 10 hours, then how long would it take 12 workers to process 20000 items?

$$
T=\frac{K_{n}}{w} \rightarrow 10=\frac{K \cdot 15000}{8} \rightarrow T=\frac{8 \cdot 20000}{1875 \cdot 12} \quad \rightarrow T \text { hours }
$$

1.) $4 x^{3 / 2}-5=103$
$4 \sqrt[2]{x^{3}}-5=103$

$$
x=9
$$

$$
4 \sqrt{x^{3}}=108
$$

3.) $(7 x-3)^{1 / 2}=5$

$$
\begin{gathered}
\sqrt[2]{x}+6=x \\
-6-6 \\
\sqrt{x}^{2}=(x-6)^{2} \\
x=x^{2}-12 x+36 \\
0=x^{2}-13 x+36
\end{gathered}
$$

4.) $\sqrt{x-3}-\sqrt{x}=3$

$$
\begin{aligned}
& \text { 4.) } \\
& \sqrt{x-3}-\sqrt{x}=3 \\
& \sqrt{x-3}=(\sqrt{x}+3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x-3=x+6 \sqrt{x}+9 \\
& -x \\
& \sqrt[3]{2 x-4}=-2+3-10 \sqrt{x}
\end{aligned}
$$

6.) $\sqrt[3]{2 x-4}=-2\left\{\begin{array}{l}-3=6 \sqrt{x}+9 \\ -12=6 \sqrt{x} \\ -2=\sqrt{x} \\ 4-x \text { No Sols } \\ \text { 8) } \sqrt{12 x+13}=2 x+1\end{array}\right.$

$$
\begin{aligned}
& -12=6 \sqrt{x} \\
& -2=\sqrt{x}
\end{aligned}
$$

7.) $3(2 x+4)^{4 / 3}=48$
2.) $\sqrt[2]{x}+6=x$

$$
\frac{\sqrt{x^{2}}}{\sqrt[3]{x^{3}-3}+7^{2}}
$$

$$
x=9
$$

5.) $5 \sqrt{x}+2=12$

$$
\sqrt{(2 x+4)^{4}}=\sqrt[2]{16^{3}}
$$

8.) $\sqrt{12 x+13}=2 x+1$

$$
\begin{aligned}
\frac{3 \sqrt[3]{(2 x+4)^{4}}}{3} & =\frac{48}{3} \\
\sqrt[3]{(2 x+4)^{4}} & =16^{3}
\end{aligned}
$$

$$
(x-9)(x-4)
$$

$x=x^{2}-12 x+36$
$0=x^{2}-13 x+36$

$$
\begin{gathered}
2 x+4= \pm 8 \\
-4
\end{gathered}
$$

$$
\begin{aligned}
& 2 x+4=-8 \\
& -4=-4 \\
& 2 x= \pm 8-4
\end{aligned} \quad \frac{8-4}{2}=2
$$

$$
\frac{8 x}{2}=\frac{ \pm 8-4}{2}-\frac{8-4}{2}=
$$

9.) $\sqrt{7 x-6} \approx \sqrt{5 x+2}=0$

$$
\sqrt{7 x-6}=\sqrt{5 x+2}
$$

10.) $(x-2)^{2 / 3}-4=5$

$$
7 x-6=5 x+2
$$

$$
\begin{aligned}
& x-2= \pm \sqrt{9^{3}} \\
& +2 \quad+2
\end{aligned}
$$

$$
x=2 \pm \sqrt{9^{3}}
$$

$$
\begin{aligned}
& \sqrt[3]{(x-2)^{2}}-4=5 \\
& \sqrt[4]{(x-2)^{2}}=9^{3} \\
& \sqrt{(x-2)^{2}}=\sqrt{9^{3}}
\end{aligned}
$$

$$
\begin{gathered}
x=2 \pm \sqrt{9^{3}} \\
2 \pm 27 \\
29 \\
\hline 25
\end{gathered}
$$

11.) The velocity of a free-falling object is given by $V=\sqrt{2 g h}$ where \mathbf{h} is the distance in feet the object has fallen and \mathbf{g} is acceleration due to gravity in feet per second squared. The value of \mathbf{g} depends on your altitude. If an object hits the ground with a velocity of 25 feet per second, from what height was it dropped in each of the following situations?
a.) You are standing on earth, so $\mathrm{g}=32 \mathrm{ft} / \mathrm{s}^{2}$.
b.) You are on a space shuttle, so $\mathrm{g}=29 \mathrm{ft} / \mathrm{s}^{2}$.

$$
\frac{25^{2}}{8}=\sqrt{h}
$$

c.) You are on the moon, so $g=0.009 \mathrm{ft} / \mathrm{s}^{2}$.

$$
\begin{aligned}
& 25=\sqrt{64 h} \\
& \frac{25}{8}=\frac{8}{8} \sqrt{h}
\end{aligned}
$$

For the following functions describe the transformation, state the End Behavior and find the domain and range.

1. $y=\sqrt{x+5}$
T:
D:
R:
EB:
Increase Interval
Decrease Interval
2. $y=\sqrt[3]{x}-3$
3. $y=4 \sqrt{x+5}$
T:
D:
R:
EB:
Increase Interval
Decrease Interval
T:
D:
R:
EB:
Increase Interval
Decrease Interval
4. $y=-2 \sqrt[3]{x+1}-4$

T:
D:
R:
EB:
Increase Interval
Decrease Interval
7. $y=-\frac{1}{4} \sqrt{x-6}+2$

T:
D:
R:

EB:
Increase Interval
Decrease Interval
5. $y=\frac{1}{5} \sqrt{x+4}$

T:
D:
R:
EB:
Increase Interval
Decrease Interval
8. $y=\sqrt[3]{x+4}+6$

T:
D:
R:
EB:
Increase Interval Decrease Interval
6. $y=-5 \sqrt[3]{x+5}-7$

T:
D:
R:
EB:
Increase Interval Decrease Interval
9. $y=\frac{2}{5} \sqrt{x-1}+3$

T:
D:
R:
EB:
Increase Interval
Decrease Interval

Homework 4-8 Reciprocal Functions (inverse variation)

Write an equation for a translation of $y=-\frac{3}{x}$ that has the given asymptotes.

1. $\mathrm{x}=2, \mathrm{y}=1$
2. $x=-3, y=0$
3. $x=4, y=-2$
4. $x=0$, and $y=6$

For each of the following functions: a) graph each equation on your own graph paper, b) list the horizontal and vertical asymptotes, c) State the domain and range of the function, d) state the end behavior, e) state the intervals of increasing and decreasing.
5. $y=\frac{3}{x-1}+2$
6. $y=\frac{1}{x-2}+4$
7. $y=\frac{2}{x-5}$
8. $y=\frac{5}{x}+1$

Solve the following:

1. $\left(4^{x}\right)^{3}=4096$
2. $\frac{3^{3}}{3^{x}}=243$
3. $\left(3^{2 x}\right)^{2}=81$
4. $\frac{2^{2 x}}{2^{3}}=32$
5. $\left(5^{x}\right)^{3}=15625$
6. Write $4^{5}=1024$ in logarithmic form

Answer: \qquad
9. Calculate: $\frac{\log 100}{\log 10}$
7. Solve for x :

$$
\log _{5} x=2
$$

Answer: \qquad

Answer: \qquad
8. Calculate:
$\log _{3} 234$
10. Calculate:
$\frac{\log _{3} 9}{\log _{2} 8}$

Answer: \qquad
\qquad

