Unit 6 Day 2

- Reflections across x-axis, y-axis, and $y=x$

Warm Up

Given $\triangle S T R$ write the new ordered pairs after T(5,-3).

Write the rule for the following transformation.

Notes - Day 2: Reflections
There are 3 basic types of reflections:

Across the x-axis.
(The line $\mathrm{y}=0$.)

Across the y-axis.
(The line $x=0$.)

Across the line $y=x$.
$(3,2) \rightarrow(2,3)$

Notes: \quad Rule for reflection across the x-axis.
What do you notice about the mountain and its reflection? What happened to the peak?

Notes:
Rule for reflection across the x-axis.
Each point I select is an equal distance from the line of reflection.

Notes:

Rule for reflection across the x-axis.
This is true for all reflections!

When reflecting across the x - axis, use are reflecting across the $\mathrm{y}=0$.

How far is vertex C from the line $y=0$?
Vertices A and B ?

Notice none of the vertices moved left or right at all.

$$
x=\text { परोs }
$$

Reflect $y=0$

Notes: \quad Rule for reflection across the x-axis.
The rule for a reflection across the x-axis is $(x, y) \rightarrow(x,-y)$.

Notes - Rule for reflection across the y-axis.
Based on the image below and our previous discussion, can you figure out the rule for a reflection across the y-axigfthe line $x=0$ s

Notes
Graph the figure.
Reflect each of the following and state the new coordinates.

a) Reflect across the

Notes
Graph the figure.
Reflect each of the following and state the new coordinates.
ib) $\mathrm{J}(-2,4) \quad \mathrm{U}(3,0) \quad \mathrm{A}(-5,-4) \quad \mathrm{N}(2,-5)$
b) Reflect across the

Notes
Reflect each of the following and state the new coordinates.
2) across the

3) across the y-aris

Notes - You Try!
Reflect each of the following and state the new coordinates.
4) Across the y-axis.

5) Across the x-axis.

Notes
Reflect each of the following and state the new coordinates.

Notes
Reflect each of the following and state the new coordinates.
7) $\mathrm{T}(-4,2)^{+4} \mathrm{H}(3,1)_{\top+3} \quad \mathrm{~A}(5,-3) \quad \mathrm{W}(-3,-4)_{\top}$ over the $W(-3,-4)_{\sqrt{2}}$ over the $Y=-2$ YOU TRY!

Notes - Rule for reflection across the line $\mathrm{y}=\mathrm{x}$.
Reflecting across the line $y=x$ is a little trickier since it is diagonal.

Notes
Using the rule for reflection across the line $\mathrm{y}=\mathrm{x}$, state the new coordinates.
8) $S(-2,4) \quad N(3,0) \quad Q(-5,-4) \quad E(2,-5)$
$S^{\prime}(4,-2) N^{\prime}(0,3) \quad Q^{\prime}(-4,-5) \quad E^{\prime}(-5,2)$

Notes
Graph the figure.
Transform across the line $x=2$
$F(3,1), A(2,-3)$, and $N(5,-2)$

Notes
Graph the figure.
Transform across the line $\mathrm{y}=4$
$C(-1,4), A(2,5)$, and $N(-3,1)$

Notes
Graph the figure.
Transform across the line $x=4$ $\mathrm{P}(2,5), A(-3,1)$, and $N(2,-2)$

$$
\frac{4}{N^{\prime}(6,5) A^{\prime}(11,1) N^{\prime}(6,-9)}
$$

Notes
Graph the figure.
Transform across the line $\mathrm{y}=1$ $\mathrm{B}(-2,4), \mathrm{U}(3,-1)$, and $\mathrm{M}(-3,1)$

