Warm Up

Homework

1) 58
2) 50
3) 30
4) 45
5) 145
6) 135
7) 130
8) 85
9) 21
10) 70
11) 64
12) 31
13) 85
14) 31
15) 137
16) 109
17) -3
18) 6
$\begin{array}{llllll}\text { 19) }-6 & 20)-11 & 21) 44 & \text { 22) } 30 & \text { 23) } 30 & \text { 24) } 35\end{array}$

Notes - Proving Triangles are Similar

Remember this?
This is a special case where triangle $A B C$ has been dilated to form triangle ADE.
On Thursday we claimed these were similar.

Today we will learn how to prove it.

Notes - Proving Triangles are Similar

There are three ways we know triangles are similar:

1. If all sides are proportional. (SSS postulate)

- Remember a proportion is when two ratios are equivalent.
- A ratio is a comparison between two numbers using division (sometimes a colon instead).

$$
\begin{aligned}
& \text { If: } \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F} \\
& \text { Then: } \triangle A B C \sim \triangle D E F
\end{aligned}
$$

Notes - Proving Triangles are Similar

There are three ways we know triangles are similar:
2. If two angles have the same measure. (AA postulate)

- Given two angles have the same measure we can show the pair of $3^{\text {rd }}$ corresponding angles are equal using the triangle sum theorem.

$$
\text { If: } \begin{aligned}
& \quad \Varangle A \cong \Varangle D \\
& \Varangle B \cong \cong E
\end{aligned}
$$

Then: $\triangle A B C \sim \triangle D E F$

Notes - Proving Triangles are Similar
There are three ways we know triangles are similar:
3. If two sides are proportional and the included corresponding angles are congruent. (SAS postulate)

If: $\Varangle A \cong \Varangle D$

Then: $\triangle A B C \sim \triangle D E F$

Note: These could be theorems (remember, theorems are proven and postulates are not) but I will not prove them in this course, so we will take them as truth and call them postulates.

Notes - Proving Triangles are Similar

Notes - Proving Triangles are Similar
Notes - Proving Iriangles are similar

\square

Notes - Proving Triangles are Similar
Tangential statement: another reason why order matters.
Consider rectangle ABCD, shown below. The order (ABCD) tells the reader to draw a line from A to B, then B to C, and so forth.
If I called it ACDB, I would be referring to the same points, but that figure would look like this:

Notes - Proving Triangles are Similar
 state the postulate and write a similarity statement.
$\triangle A B C \sim \triangle$ wi

$$
\frac{10}{5}=\frac{8}{4}=\frac{6}{3} 2
$$

Notes - Proving Triangles are Similar

Notes - Proving Triangles are Similar

> Are the triangles similar? If so, state the postulate and write a similarity statement.

Notes - Proving Triangles are Similar

Are the triangles similar? If so, state the postulate and write a similarity statement.

Notes - Proving Triangles are Similar

> Are the triangles similar? If so, state the postulate and write a similarity statement.

Notes - Proving Triangles are Similar

> Are the triangles similar? If so, state the postulate and write a similarity statement.

．
\square
\square

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
正
正
正

\footnotetext{

\[
7-4 .

\]

 \section*{
 \section*{\section*{Your HW is 7－4．

 \section*{
 \section*{\section*{Your HW is 7－4．

 \section*{
 \section*{\section*{Your HW is 7－4．

 Your HW is

 Your HW is

 Your HW is

 Your HW is 7 －4．

 Your HW is 7 －4．

 Your HW is 7 －4．

 Your HW is $7-4$

 Your HW is $7-4$

 Your HW is $7-4$

 | Preser |
| :--- |

 | Preser |
| :--- |

 | Preser |
| :--- |

 HWis－A．

 HWis－A．

 HWis－A．

 HWis－A．

 er}

}

 er}
}

 er}
}
\square

