Solving Exponential Equations with the Same Base

Property of Equality for Exponential Equations

If b is a positive number other than 1, then $b^x = b^y$ if and only if x = y.

Ex. 1 $9^{2x} = 27^{x-1}$	Ex. 2 $100^{7x} = 1000^{3x-2}$
Ex. 3 $4^x = (\frac{1}{2})^{x-3}$	Ex. 4 $81^{3-x} = (\frac{1}{3})^{5x-6}$
Ex. 4 $\sqrt{5} = 25^{x-1}$	Ex. 5 $8^{x-1} = 32^{3x-2}$
Ex. 5 $3^x = \frac{1}{81}$	Ex. 6 $3^x = .9\sqrt{3}$
Ex. 7 $5^x = 5\sqrt{5}$	Ex. 7 $4^{2x} = 16\sqrt[3]{4}$

Day 2: Exponentials

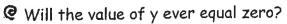
Exploring Exponential Models

Standard Form of an Exponential Function

- @ The standard form of an exponential function is _____
- @ This can also be written as _____
- **Q** a and b are constants. "a" is the ______ of the function or the
- **@** "b" is the _____ or ____ factor
- @ For a > 0

Example: $y = 2(3)^x$

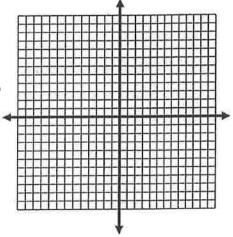
- @ If _____, the function models _____
- @ "b" is the growth factor.



@ What is the domain? Range?

Domain:

Range:

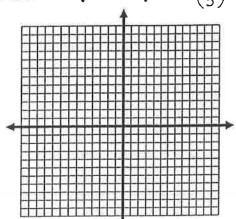


- @ If _____, the function models _____Example: $y = 1(\frac{1}{3})^2$
- @ "b" is the decay factor

What is the domain? Range?

Domain:

Range:



Example 0.5 Name the transformations of $y = 2^x$. Then, give the domain and range.

A.
$$y = 2^x + 7$$

B.
$$y = 2^{x-3}$$

B.
$$y = 2^{x-3}$$
 C. $y = 2^{x+4} - 9$

Example 1: The population of the U.S. in 1994 was about 260 million, with an average annual rate of increase of about 0.7%

- @ What is the growth factor for the U.S. population?
- @ Suppose this rate of growth continues. Write an equation that models the future growth of the U.S. population.
- @ Predict the population in the U.S. in the year 2001.

Example 2: Suppose the population of a certain endangered species decreases at a rate of 3.5% per year. You have counted 80 of these animals in the habitat you are studying.

- @ Write the equation for the population each year.
- $oldsymbol{Q}$ Predict the number of animals that will remain after 10 years.
- @ At this rate, after how many years will the population first drop below 15 animals?

Example 3: A car that 5 years ago cost \$20,000, is now worth only \$13,500. What is the average annual rate of depreciation?

Example 4: Given the function $y = 5(1.61)^x$, state whether the function represents growth or decay and state the percentage rate of increase or decrease.

Example 5: Given the function $y = 3(.56)^{x}$, state whether the function represents growth or decay and state the percentage rate of increase or decrease.

I Half Life

The half life of a substance is the time it takes for half of the material to

A 3000-mg sample of a certain radioactive element has a half life of 3 seconds. How much of the sample remains after 1 minute?

Arsenic-74 is used to locate brain tumors. It has a half life of 17.5 days. Write the exponential decay function of a 90-mg sample. Use the function to find the amount remaining after 6 days.

II. Compound Interes

The compound interest formula for	the amount A in an account is
P =	r=
n -	† =

- Jodie's parents started a savings account for her when she was born. They invested \$500 in an account that pays 6% interest compounded annually. Find the balance of the account after each of the first three years.
- Graham's grandparents started a savings account for him when he was born. They invested \$100 in an account with 8% annual interest compounded quarterly. How much is in his account on his 16th birthday?

Logarithmic Functions Notes

<u>Logarithm</u>: In general, the inverse of $y = b^x$ is $x = b^y$. In $x = b^y$, y is called the <u>logarithm</u> of x. It is usually written as $y = log_b x$ and is read "y equals log base b of x."

**The inverse function of the exponential functions with base b, is called the logarithmic function with base b. For x > 0, b > 0, $b \ne 0$,

$$b^x = y \implies x = \log_b y$$

EXPONENTIAL FORM

LOGARITHM FORM

I. Rewriting in both forms.

Example 1) Rewrite logarithmic each equation in its equivalent exponential form.

a.
$$\log_5 x = 2$$

d.
$$3 = \log_b 64$$

b.
$$\log_3 7 = y$$

e.
$$3 = \log_7 x$$

c.
$$2 = \log_b 25$$

f.
$$\log_4 26 = y$$

Example 2) Rewrite each exponential equation in its equivalent logarithmic form.

a.
$$12^2 = x$$

d.
$$b^3 = 8$$

b.
$$2^5 = x$$

e.
$$b^3 = 27$$

c.
$$8^3 = c$$

f.
$$4^y = 9$$

II. Basic and Inverse Log Properties- Because logs are exponents, they have properties that can be verified using the properties of exponents.

Basic Properties:

1.
$$\log_b b = 1$$
 because $b^1 = b$

$$1. \log_b b^x = x$$

2.
$$\log_b 1 = 0$$
 because $b^0 = 1$

$$2. b^{\log_b x} = x$$

Example 3) Evaluate using the log properties.

II. Common Logarithm: Base 10 Logarithm, usually written without the subscript 10.

 $\log_{10} x = \log x$, x > 0. Most calculators have a LOG key for evaluating common logarithms.

The calculator is programmed in base 10.

Example 4) Find the value of each log. Round to the nearest ten-thousandths.

a. log 81,000

c. log 0.35

ь. log 6

d. log 0.0027

V. Evaluating Logs using the Change of Base Formula

For all positive numbers, a, b, and n, where $a \neq 1$ and $b \neq 1$,

$$\log_a n = \frac{\log_b n}{\log_b a}$$

Example:
$$\log_5 12 = \frac{\log_{10} 12}{\log_{10} 5}$$

This formula allows us to evaluate a logarithmic expression of any base by translating the expression into one that involves common logarithms.

Example 5) Evaluate each logarithm

a. log₃ 18

d. $\log_{25} 5$

b. log₄ 25

e. log₂ 1024

c. log₂ 16

f. log₅ 125

V. Solving for variables with exponentials and logs.

****MAY HAVE TO REWRITE AND APPLY PROPERTIES OR CHANGE OF BASE FORMULA!!!

Example 6) Solve for the variable:

a.
$$\log_3 243 = y$$

b.
$$\log_9 x = -3$$

c.
$$\log_8 n = \frac{4}{3}$$

Example 7) Evaluate:

a.
$$\log_8 8^4 = x$$

b.
$$\log_9 9^2 = y$$

Example 8) Solve each log equation. Be sure to check your answers!

a.
$$\log_3(3x - 6) = \log_3(2x + 1)$$

b.
$$\log_6(3x - 1) = \log_6(2x + 4)$$

Solving using Simple Logarithms

SWOOSH Method	Change of Base	Log = Log
Log#(x) = #	Log#(#) = x	Log(x) = Log(x)
Use when a variable is attached to the logarithm.	Use when a constant is attached to the logarithm.	Use when <u>one</u> log is = to <u>one</u> other log. Logs must have the same base in order to cancel.

Example 1: Solving using the SWOOSH Method

a) $Log_2(2x + 1) = 4$

- b) $Log_4(17x-4) = 3$
- c) log(2x-5) = 2

Example 2: Solving using Change of Base

a) $Log_2 8 = 3x + 3$

- b) $Log_5125 = x^2 2x$
- c) $Log_216 = x^2$

Example 3: Solve by canceling the logsl

a) $\log_4(3x-1) = \log_4(2x+3)$

 $\log_2(x-6) = \log_2(2x+2)$

Properties of Logarithms

Name_____

Objective: To apply the properties of logs to condense and expand logarithms and to use these properties to solve logarithmic equations.

Properties of Logarithms

- 1. Product Property: $log_b mn =$
- 2. Quotient Property: $log_b \frac{m}{n} =$
- 3. Product Property: $log_b m^x =$

Example 1: Condense the following logarithmic expressions using the properties of logs

A.
$$\log x + \log 2 + \log y$$

B.
$$log_2x - log_27$$

C.
$$2\log x + \log y$$

D.
$$\frac{1}{2}log_3x + 2log_3y$$

$$E. \ \frac{1}{4}\log x - (2\log y - 5\log z)$$

Example 2 Expand the following the logarithmic expressions using the properties of logs

A.
$$log(xyz)$$

B.
$$log_{2} \frac{4x}{y}$$

Example 3 Solve the following logarithmic equations.

A.
$$log_3 5 + log_3 x = log_3 10$$

B.
$$log_2x + log_2(x+2) = 3$$

$$C. \quad \log 16 - \log 2x = \log 2$$

D.
$$4log_2x + log_25 = log_2405$$

$$E. \quad \log(x+21) + \log x = 2$$

F.
$$2log_2(x+2) = 10$$

Unit 2

SWBAT solve equations initially without logarithms by using either similar bases or the properties of logs.

Solving equations with NO logs!

Method 1: Similar Bases

(Note: Does not work for every problem)

Step 1: Isolate the Base

Step 2: Write both sides of the equation as an exponential with like bases.

Step 3: Set exponents equal to each other.

Step 4: Solve for the unknown.

Example 1: $2^{2x+1} = 32^x$

Example 2: $-5 + 5^{3x-9} = 120$

Example3: Solve for x: $3^{2x} = 27$

You Try! Solve for x: $2^x = 8$

Why would you need	to use a loa	8 Recouse	the variable	is in	the
way would you need	10 026 0 100	A DECCOSO	THE TOTAL	14	

and logs bring them down!!

Method 2: Properties of Logs

Step 1: Make sure the piece with the unknown exponent is _____ on one side,

Step 2: _____ the logarithm to each side.

Step 3: Use the ______ to bring down the exponent and solve!

Example 1: Solve for x: $5^{3x} = \frac{1}{125}$

You Try! Solve for x: $2^{5x+1} = 32$

Example 2: Solve for x: $3^{x} + 5 = 40$

You Try! Solve for x: $2(6^{2x}) = 20$

The Many Ways to Solve a Logarithmic Equation

W. T.	The Many Ways to Colve	a Lugarithmic Equation
	SWOOSH! Use when a variable is attached to the logarithm.	Solve for x: log₄(4x - 2) = 3
One Log	Change of Base Use when the variable is not attached to the logarithm.	Solve for x: log₂45 = x
	Cancel the logs! Do this if and only if there is <u>one</u> log per side.	5olve for x: log ₆ x = log ₆ 2x - 2
Two Logs	Condense the logs So that only one log appears per side. Then, decide whether to cancel, swoosh, or use change of base.	Solve for x: $3 \log_2 x + \log_2 5 = 7$
	Add a Log! Use this if you cannot get similar bases.	Solve for x: 7 ^{x-3} + 5 = 30
No Logs	Similar Bases! Break each base down so that they are the same, cancel the bases, and work only with the exponents!	Solve for x: 25 ^{2x} = 125

Practice: Complete the following problems for extra practice using the above rules for solving logarithms.

1. $2\log_4 x = 12$ 2. $\log_5 x - \log_7 7 = 2$

Natural Logarithms and Base e

The Natural Base is	an irrational number and	is approximately	It is often called
number.			
Ex. 1 Simplify natural base	expressions		
A. $e^2 \cdot e^5$	B. $\frac{12e^4}{3e^2}$	C. (5e ⁻³)^2	D. 5e ⁻³ ·2e ²
Ex. 2 Use your calculator to	evaluate Natural Base Ex	pressions	21
A. e ^{0.5}	B. e ⁻⁸		C. <i>e</i> ²
			1)
Natural Logarithm is a logar	ithm with base		
The Natural logarithm funct			
Example 3 Evaluate Natura	il Base Expressions		
A. ln 3	B. $\ln \frac{1}{4}$	C. ln 0.05	D. Lne
Example 4 Simplify the exp	pression		
A. $\frac{\ln e^4}{8}$	B. ln e ^{8.3}	C. 10 ln e	D. ln 1

Example 5 Write each as a single logarithm. Use the properties to condense.

B.
$$ln 24 - ln6$$

C.
$$\frac{1}{3}(lnx + lny) - 4lnz$$

Example 6 Solve Base e Equations Remember....Isolate the e. Then take the In of each side.

A.
$$e^{\frac{x}{4}} + 3 = 9$$

B.
$$5e^{-x} - 7 = 2$$

C.
$$e^{3x+1} = e^{13}$$

Example 7 Solve Natural Log Equations

A.
$$ln5 - lnx = 4$$

A.
$$ln5 - lnx = 4$$
 B. $ln(2m + 3) = 8$

C.
$$ln\frac{x-3}{4} = 8$$

Applications of Natural Logs and Base e

***To calculate continuously compounded interest, we use the formula:

y =

r=

P =

† **=**

Example 6: How much money will be in a bank account after 1.5 years If you invested \$400 at 7.6% compounded continuously?

Practice: Complete the following problems for class work. Show all work.

1. Solve $\ln(14x - 3) = \ln(7x + 11)$

2. Solve $2e^x - 5 = 1$

3.
$$ln(x-1) = -2$$

4.
$$ln(2x-3) = 2.5$$

5.
$$\ln 48 - \ln x = \ln 4$$

6.
$$e^{3x} \cdot e^{x} = 15$$

Mixed Review: Remember, all logarithms share the same rules. Always condense first before solvingl

7.
$$4^{3x} = 12$$

8.
$$log_6 x + log_6 9 = log_6 54$$

9.
$$\log_2 x = -3$$

10.
$$\log_2 64 = x$$

11.
$$\log_2 x - \log_2 5 = 3$$

12.
$$\ln 4x + \ln 5 = \ln 20$$

13. Mazie invested \$4500 in an account earning 4.3% interest compounded continuously. After how many years will she have \$7400 in her account?

Exponential Fur	ction	Log	garithmic Function
A function whose unknown (x) is exponent	located in the	The inverse	e function of an exponential function.
Transformations: y = a	(b)(x-h) + k	Transfo	rmations: $y = a \cdot \log_b(x-h) + k$
Domain:		Domain:	
Range:		Range:	
Asymptote:		Asymptote:	

Example 2: Graphing Exponential Functions

a) Graph
$$y = 2^{x+3} - 5$$

Transformations:

Asymptote:

Domain:

Range:

End Behavior:

b) Graph
$$y = -3^{x-1} + 6$$

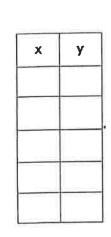
Transformations:

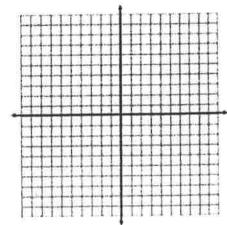
Asymptote:

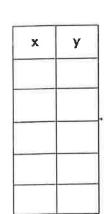
Domain:

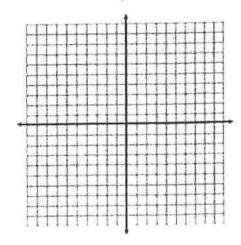
Range:

End Behavior:









Example 3: Graphing Logarithmic Functions

a) Graph $y = log_2x - 3$

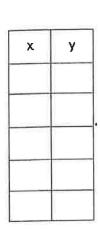
<u>Transformations</u>:

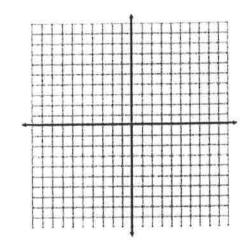
Asymptote:

<u>Domain:</u>

Range:

End Behavior:





b) Graph $y = -\log_4(x + 4) + 2$

Transformations:

Asymptote:

Domain:

Range:

End Behavior:

_

