WARM-UP

WHAT DO YOU REMEMBER ABOUT PROVING TRIANGLES ARE CONGRUENT (THINK SSS, SAS, AND HL, AAS)

UNIT 7 VOCABULARY

MVP Honors Math 2

-PART OF A LINE CUT OFF BY TWO POINTS

LINE

- CONNECTED POINTS THAT EXTEND INFINITELY IN TWO DIRECTIONS

ANGLE

-SPACE FORMED BETWEEN TWO RAYS THAT MEET AT A COMMON ENDPOINT

CONGRUENT

- FIGURES OF BOTH THE SAME SIZE AND SAME SHAPE ~~

CONGRUENT SEGMENTS

9

-SEGMENTS WHICH HAVE EQUAL LENGTHS

-POINT THAT DIVIDES A SEGMENT INTO TWO CONGRUENT SEGMENTS

SEGMENT BISECTOR

-LINE (OR PART OF A LINE) THAT INTERSECTS THE SEGMENT AT ITS MIDPOINT

PERPENDICULAR LINES

-LINES THAT INTERSECT TO FORM A RIGHT ANGLE

Same Mensure Same shape

-ANGLES WHICH HAVE EQUAL MEASURES

SYMBOLS: $\angle ABC \cong \angle DEF$

-Ray that divides an angle into two Congruent angles

COMPLEMENTARY ANGLES:

-Two angles whose measures sum to 90°

-Two angles whose measures sum to 180° (make a straight line)

1

LINEAR PAIR

-Two adjacent angles whose non-Common sides are opposite rays * Postulate: Linear Pairs are Supplementary

VERTICAL ANGLES

-OPPOSITE (NON-ADJACENT) ANGLES FORMED BY TWO INTERSECTING LINES

*THEOREM: ALL VERTICAL ANGLES ARE CONGRUENT

RIGHT ANGLES

-ANGLE WHOSE MEASURE EQUALS 90°

*THEOREM ALL RIGHT ANGLES ARE CONGRUENT

RIGHT TRIANGLE

-TRIANGLE THAT CONTAINS A RIGHT ANGLE

REFLEXIVE PROPERTY OF CONGRUENCE

-A GEOMETRIC FIGURE IS CONGRUENT TO ITSELF

TRANSITIVE PROPERTY OF CONGRUENCE

-IF TWO "THINGS" ARE EQUAL TO THE SAME AMOUNT, THEN THE TWO "THINGS" ARE EQUAL TO EACH OTHER

Ex. Let A = 2 and B = 2. We know A = B by the Transitive Property of Congruence (both equal 2)

PARALLEL LINES

COPLANAR LINES THAT DO NOT INTERSECT. THE SYMBOL | | MEANS "IS PARALLEL TO."

EX.

Alternate Interior Angles--Angles

on opposite sides of a transversal and inside two other lines

Alternate Interior Angles Theorem- If a transversal intersects two parallel lines, then alternate interior angles are **congruent**.

Corresponding Angles-Angles in the same position relative to a transversal and two other lines

Corresponding Angles Postulate – If a transversal intersects two parallel lines, then corresponding angles are <u>congruent</u>. Consecutive Interior-Angles on the same side of a transversal and inside two other lines 22, 23

Consecutive Interior Angles Theorem – If a transversal intersects two parallel lines, then same-side interior angles are **supplementary**.

Alternate Exterior Angles-

Angles on opposite sides of a transversal and outside two other lines

Alternate Exterior Angles

Theorem – If a transversal intersects two parallel lines, then alternate exterior angles are <u>congruent</u>.

What tells us that $m \angle 3 + m \angle 2 = 180$?

In the diagram above, $\ell \parallel m$. Find $m \ge 1$ and then $m \ge 2$. State your reasoning.

In the diagram below, $a \mid \mid b$, find all the angles that are equal in measure to $\angle 3$.

In the diagram above, *e* || m. Find the values of *a*, *b*, and *c*.

The sum of all interior angles is equal to 180° .

ANY EXTERIOR ANGLE IS EQUAL TO THE SUM OF THE TWO REMOTE INTERIOR ANGLES.