WARM UP

WHAT DO YOU REMEMBER ABOUT PROVING TRIANGLES ARE CONGRUENT (THINK SSS, SAS, AND HL, AAS)

UNIT 7 VOCABULARY
 MVP HONORS MATH 2

SEGMENT

-PART OF A LINE CUT OFF BY TWO POINTS

LINE

- CONNECTED POINTS THAT EXTEND

INFINITELY IN TWO DIRECTIONS

ANGLE

-SPACE FORMED BETWEEN TWO RAYS THAT MEET AT A COMMON ENDPOINT

CONGRUENT

- FIGURES OF BOTH THE SAME SIZE AND SAME SHAPE

CONGRUENT SEGMENTS

-SEGMENTS WHICH HAVE EQUAL LENGTHS

MIDPOINT

-POINT THAT DIVIDES A SEGMENT INTO TWO CONGRUENT SEGMENTS

SEGMENT BISECTOR

-LINE (OR PART OF A LINE) THAT INTERSECTS THE SEGMENT AT ITS MIDPOINT

-LINES THAT INTERSECT TO FORM A RIGHT ANGLE

- SYMBOL:

PERPENDICULAR BISECTQR

-LINE THAT IS PERPENDICULAR TO A SEGMENT AT ITS MIDPOINT

CONGRUENT ANGLES
Same
measure
-ANGLES WHICH HAVE EQUAL MEASURES

SYMBOLS: \qquad $\angle A B C \cong$

COMPLEMENTARY ANGLES:

-TWO ANGLES WHOSE MEASURES SUM TO 90°

SUPPIEMENTARY ANGIES

-TWO ANGLES WHOSE MEASURES SUM TO 180° (MAKE A STRATGII LINE)

LINEAR PAIR

-TWO ADJACENT ANGLES WHOSE NONCOMMON SIDES ARE OPPOSITE RAYS * Postulate: Linear Pairs are SUPPLEMENTARY

VERTICAL ANGIES

-OPPOSITE (NON-ADJACENT) ANGLES FORMED BY TWO INTERSECTING LINES
*THEOREM: AlL VERTICAL ANGLES ARE
CONGRUENT

RIGHT ANGIES

-ANGLE WHOSE MEASURE EQUALS 90°
*THEOREM ALL RIGHT ANGLES ARE CONGRUENT

RIGHT TRIANGLE

-TRIANGLE THAT CONTAINS A RIGHT ANGLE

REFIEXIVE PROPERTY OF CONGRUENCE

-A GEOMETRIC FIGURE IS CONGRUENT TO ITSELF

TRANSITIVE PROPERTY OF CONGRUENCE

-IF TWO "THINGS" ARE EQUAL TO THE SAME AMOUNT, THEN THE TWO "THINGS" ARE EQUAL TO EACH OTHER

> EX. LET A $=2$ AND B $=2$. WE KNOW A = B BY THE TRANSITIVE PROPERTY OF CONGRUENCE (BOTH EQUAL 2)

PARALLEL IINES

COPLANAR IINES THAT DO NOT INIERSECT, IHE SYMBOL $\| \backslash M E A N S$ IS PARALLEL. TO:

EX.

Transversal--A line that intersects two or more lines.

Alternate Interior Angles--Angles on opposite sides of a transversal and inside two other lines

Alternate Interior Angles Theorem- If a transversal intersects two parallel lines, then alternate interior angles are

congruent.

Corresponding Angles-Angles

 in the same position relative to a transversal and two other lines

Corresponding Angles Postulate If a transversal intersects two parallel lines, then corresponding angles are congruent.

Consecutive Interior-Angles

 on the same side of a transversal and inside two other lines

Consecutive Interior Angles Theorem - If a transversal intersects two parallel lines, then same-side interior angles are supplementary.

Alternate Exterior Angles-

Angles on opposite sides of a transversal and outside two other lines

Alternate Exterior Angles Theorem - If a transversal intersects two parallel lines, then alternate exterior angles are congruent.

What tells us that $m \angle 3+m \angle 2=180$?

In the diagram above, $\ell \| m$. Find $m \angle 1$ and then $m \angle 2$. State your reasoning.

In the diagram below, a\|\|b, find all the angles that are equal in measure to $\angle 3$.

In the diagram above, $\epsilon \| \mathrm{m}$. Find the values of a, b, and c.

THE SUM OF ALL INTERIOR ANGLES IS EQUAL TO 180°.

EXTERIOR ANGLE THEOREM

ANY EXTERIOR ANGLE IS EQUAL TO THE SUM OF THE TWO REMOTE INTERIOR ANGLES.

